Quadratic serendipity finite elements on polygons using generalized barycentric coordinates

نویسندگان

  • Alexander Rand
  • Andrew Gillette
  • Chandrajit L. Bajaj
چکیده

We introduce a finite element construction for use on the class of convex, planar polygons and show it obtains a quadratic error convergence estimate. On a convex n-gon, our construction produces 2n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, by transforming and combining a set of n(n + 1)/2 basis functions known to obtain quadratic convergence. The technique broadens the scope of the so-called 'serendipity' elements, previously studied only for quadrilateral and regular hexahedral meshes, by employing the theory of generalized barycentric coordinates. Uniform a priori error estimates are established over the class of convex quadrilaterals with bounded aspect ratio as well as over the class of convex planar polygons satisfying additional shape regularity conditions to exclude large interior angles and short edges. Numerical evidence is provided on a trapezoidal quadrilateral mesh, previously not amenable to serendipity constructions, and applications to adaptive meshing are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polygonal Spline Spaces and the Numerical Solution of the Poisson Equation

It is known that generalized barycentric coordinates (GBCs) can be used to form Bernstein polynomiallike functions over a polygon with any number of sides. We propose to use these functions to form a space of continuous polygonal splines (piecewisely defined functions) of order d over a partition consisting of polygons which is able to reproduce all polynomials of degree d. Locally supported ba...

متن کامل

Generalized Barycentric Coordinates on Irregular Polygons

In this paper we present an easy computation of a generalized form of barycentric coordinates for irregular, convex n-sided polygons. Triangular barycentric coordinates have had many classical applications in computer graphics, from texture mapping to ray-tracing. Our new equations preserve many of the familiar properties of the triangular barycentric coordinates with an equally simple calculat...

متن کامل

Bijective Mappings with Generalized Barycentric Coordinates: A Counterexample

Many recent works attempt to generalize barycentric coordinates to arbitrary polygons. I construct a counterexample proving that no such generalization will produce purely bijective mappings in the plane provided the coordinates meet the Lagrange, reproduction, and partition of unity properties. The proof concerns generalized barycentric coordinates in a square, but trivially generalizes to arb...

متن کامل

On the monotonicity of generalized barycentric coordinates on convex polygons

Article history: Received 6 August 2015 Received in revised form 28 January 2016 Accepted 29 January 2016 Available online 11 February 2016

متن کامل

Approximating Planar Conformal Maps Using Regular Polygonal Meshes

Continuous conformalmaps are typically approximated numerically using a trianglemeshwhich discretizes the plane. Computing a conformal map subject to user-provided constraints then reduces to a sparse linear system, minimizing a quadratic ‘conformal energy’.We address themore general case of non-triangular elements, and provide a complete analysis of the casewhere the plane is discretized using...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematics of computation

دوره 83 290  شماره 

صفحات  -

تاریخ انتشار 2014